THEORY OF THE FLOW OF AN ELASTOVISCOPLASTIC MEDIUM

N. V. Tyabin and S. A. Trusov UDC 532.501.33:532.135

We present a rheological equation of state for an elastoviscoplastic medium which agrees
well with experimental data from the flow of consistent lubricants. We obtain an equation
for the stationary flow of an elastoviscoplastic medium.

Numerous experimental data for the flow of viscoplastic dispersed systems and colloidal solutions
indicate that the flow of these media does not conform to the law currently applied for describing the flow
of a Schwedoff —Bingham fluid. Therefore rheological equations of state have been proposed involving a
nonlinear dependence between the tangential stress and the velocity gradient for viscoplastic materials.
Among these equations we note those due to Herschell and Bulkley [1], Casson [2], and Shul'man [3]. In
4] 2 method was developed for approximating the nonlinear flow equations of consistent lubricants in the
form of the linear Schwedoff —Bingham equations,

At the same time, studies have shown that nonlinear viscoplastic materials, consistent lubricants
{5], structured petroleum products [6], solutions and polymer melts [7] possess elastic properties and that
for such media shear moduli and Young's moduli have been determined.

Thus an urgent need exists to formulate a theory for the flow of elastoviscoplastic media which would
take into account in the flow rules for viscoplastic materials the influence of elastic properties. It is
therefore necessary, in the case of elastoviscoplastic media, to verify, under stationary flow conditions,

a direct relationship to the Hencky [8] and Il'yushin [9] models in which a linear relationship exists be-
tween the tangential stresses and the velocities of deformation, i.e., it is necessary to show that the
Schwedoff —Bingham equations are applicable.

We establish a rheological equation of state for an elastoviscoplastic medium based on the structural
rheological model shown i Fig. 1. This model consists of a spring, simulating the elastic properties of
the medium, in series with a combination viscoplastic element. We obtain the rheological equation of state
by combining velocities of deformation, represented by elements of the model in series, with stresses, =
represented by elements of the model in parallel.

Equations for the deformation of an elastic element comply with Hooke's law,

3o
Pij 1+o

The behavior of the plastic element of the model is described by the flow equations for a rigid-plastic
body,

P8 + 2Ge;; . (I

9 .
Pij= Ped + 2 o e (2)

while the flow equations for the viscous element of the model are those for Newtonian flow
Pi; = P + 21y, (3)

Combining the stresses for the plastic and viscous elements, we obtain the flow equations for a visco-
plastic element:

6 .
Pij = Pb +2 ("X——'r '1) €ije (4
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Fig. 1 Fig. 2
Fig. 1. A model for an elastoviscoplastic medium.

Fig. 2. Flow of an aliphatic lubricant when studied in (@) a rotation viscos-
imeter,and (b) a capillary viscosimeter. [In part a of the figure the solid
curves are those for logD = f(log 7y), the dashed for logé =f(log 7); in part
b of the figure the solid curves are those for pt/ 27%{2 = f(TZW), the dashed
for &7 = £(1%).] '

The velocities of elastic deformation may be obtained from Eq. (1):

. 30

o s (%)
Pi i+ oG P

. 1
=%

We obtain the rheological equation of state for an elastoviscoplastic medium by adding together the
corresponding velocities of deformation for the elastic [Eq. (5)] and viscoplastic [Eq. (4)] elements of the
model (see Fig. 1):

1 [¢] . 3¢ - [+] .
= Db+ — [ — 29 =92 6
Pu— P+ (x +n)(p,, 1+U)vc<3) 2(x+n)el, (6)

We obtain the scalar factor from the Mises plasticity condition, to which the plastic element of the
model is subject:

1
5 Sy = 0% ™
Differentiating this expression with respect to the time, we find
Sij:gij =0, (8)

Since the viscous element of the model has no effect on the transition from elastic to plastic deformations,
we may put 7 =0 in Eq. (8) to get

. 3o - G .
Pij = I+ p.S—2 ry (Pi; — p:B) + 2Ge;;.
Substituting these values into Eq. (8), we determine the scalar factor in the form
i .
e (9)

Consequently, A depends not only on the velocities of the deformations but also on the stresses, this being
also a consequence of the plasticity theory due to Reuss [10].

A stationary flow of an elastoviscoplastic medium will exist if the time of flow of the medium is large,

t — «, or if the relaxation period of the medium is small, /G — 0. The equation of state (6) may be written
in the form
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' 8 .
Pij = Ped +2(T+ n)ei,-- (10)
From relation (9) and the Egs. (10), we obtain the scalar factor for a stationary flow:
Sis

po S D
0 2

from Eqs. (10) and (11) we find the equations for the stationary flow of an elastoviscoplastic medium,
namely,

(no sumrmation), (11)

e -
s, =2 <262 ~12L 4 'qsi]-) €;; (no summation), (12)

For pure shear the equation for the stationary flow of an elastoviscoplastic medium assumes the form
T = 62 |- 1re. (13)

Thus the presence of elastic properties in a viscoplastic medium makes its stationary flow rule non-
linear; consequently, this medium does not follow the Hencky —Iltyushin postulate concerning linearity of
the flow rule.

We compare the stationary flow rule (13) with experimental data relating to the flow of a consistent
lubricant (oil). Figure 2a shows graphs for the flow of an aliphatic lubricant, the studies being conducted
with capillary and rotation viscosimeters [11], the stress state realized in the latter being close to homog-
eneous. This graph was redrawn in Fig. 2b in the form of the dependence 7% = f(re). As is evident, the
theoretically based Eq. (13) agrees with the experimental data,

A positive feature of the flow equation (13) is that it describes a nonlinear law for the flow of an
elastoviscoplastic material using only two rheological constants, each having a real physical sense.

Relations for determining the rate of volume deformation for an elastoviscoplastic medium may be
obtained from Egs. (1) in the form

p=£
© 3

Differentiating with respect to the time, we obfain

3 1—20 1. (14)

2 1o i

From Eq. (14) we see that an elastoviscoplastic medium will be incompressible in any one of the following
three cases: for G = », for ¢ = 0.5, and if pc = 0. It is known that for viscous and for plastic flow ¢ = 0.5,
therefore the continuity equation év =0 is satisfied for an elastoviscoplastic medium. In the region where
VI, < 6, an elastoviscoplastic medium is elastic, so that its deformations can be calculated in accord with
the equations of elasticity theory. The size and shape of the elastic region are then to be determined from
the boundary condition
VI,=0=GV I;.

Thus, depending on the size of the deformations, the entire region of the medium can be partitioned
into a region of elastic deformations in which VI < 6/G, and a flow region wherein VI > 9/G. To sim-
plify the calculations in the elastic region we put ¢ = 0.5, i.e., we consider the elastoviscoplastic medium

to be an elastic-incompressible medium, and this will definitely be so if the deformations during flow of the
medium significantly exceed the elastic deformations.

We now obtain the equations for the stationary flow of an elastoviscoplastic medium. For this pur-
pose we use the equation of motion of a continuous medium, assuming the inertia forces to be zero:

pF + grad p, + divs;; = 0.

If in this equation we substitute pe = —p and the sjj from Eq. (12), we obtain the equation for the stationary
flow of an elastoviscoplastic medium:
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oF — grad p 4+ n; dive;; +£;;div meg = 0,

1 o
wherenef=? n(l—i—l/ 1+

4672
Yy ) . To this equation there is added
N\ ‘ 2 P

the equation of continuity.

We pause here to consider the rheological equation of state of
a viscoplastic medium. It is readily seen that if in Eq. (7) we sub~
stitute the expressions for the stresses from Eqs. (4), we obtain A
=V, for a viscoplastic medium, and the rheological equation of state
takes the form

Fig. 3. A model for the flow _9 /
of an elastoviscoplastic medi- e (
um along an inclined surface:
1) stopped region; 2) flow re~
gion,

0 .
— 1 &;. (15)
V1, ) !

For pure shear it becomes the Schwedoff —Bingham equation
T =0 4+ ne.
Consequently, for a viscoplastic medium G = «.

It should be remarked that various points of view exist relative to the question of the behavior of a
viscoplastic medium in the region where v’ Iz' < . Thus, for example, Volarovich [12] regards a visco-
plastic medium as an "elastic" medium in the region where v, < 6, and Gutkin {13] has even calculated
its deformations in this region according to the equations of elasticity theory. As a matter of fact, a visco-
plastic medium with VI, < 6 is a rigid plastic body for which G = «,

Equation (15) with v Iz' « /7 degenerates into the equation for the flow of a perfectly plastic body,
namely,

Sij = 26 ’_—‘_'i_j—' .
Consequently, a viscoplastic medium, in a region where VI, = 4, flows like a rigid-plastic medium since in
this region the condition VI, = 0 is not satisfied.

Finally, since for a viscoplastic medium G = «, it is then a direct result of Eq. (14) that &y = 0 for
this medium, i.e., it is an incompressible medium. Therefore the equations of a "compressible" visco-
plastic medium as written by Kasimov and Mirzadzhanzade [14] and Astrakbhan and Grigoryan [15], by
analogy with the equations of a compressible viscous liquid, need not be regarded as being equivalent.

Flow in a Circular Pipe. We consider a medium present in a circular pipe. Due to a pressure dif-
ference in the medium a tangential stress 15, = Apr/2l develops. For o = 0.5 we obtain displacements in
the form u, = uy(r). Hooke's law may then we written

Apr du

T, = =G —Z (16)
" 21 dr

If we integrate, taking into account as boundary conditions the "no slip" condition uz(R) = 0 at the pipe
wall, we find

= 2P (R,
e

The radius of the elastic region may be obtained from the boundary condition: for r = ry, dug/dr = 6/G;
we find it to be ry = 261/Ap. Inthe region where r > r; the medium will flow with the speed vy = Vg (r).
If into Eq. (13), written in a cylindrical system of coordinates, we substitute 7., from Eq. (16), we find,
upon integrating and using the "no slip" condition vz (R) =0, that

Ap 20% r
v, = —— (R2—1r? —In —,
4l ( )+ Apn R
The elastic region moves with the speed
Ap 202 r
Vg =—— (R2—12 == In % .
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The volumetric outflow of the medium from the tube is given by

R
ApR4 rZ (2

= 2oy + 20 | rodr = TP [ o\ (1
= wt 20 | o (%)

This equation may be written as
Twir: 02+ n’/zrﬁwa_

In Fig. 2b we show the graph of the functional dependence 7% = f (‘r%v/ 2pt/2) for the flow of an aliphatic
lubricant in acapillary viscosimeter,drawn in accord with the experimental data [11] given in Fig. 2a. As
is evident, the experimental data confirms the theoretical relation (17).

Flow along an Inclined Surface. The flow of a viscoplastic medium under the influence of gravity was
studied in [16]. Volarovich and Gutkin, who solved an analogous problem in [17], assumed that in the
felastic® region the pressure was propagated in accord with a hydrostatic law. Finally, these solutions
were derived once again in [18]. In all these solutions the thickness of the layer of the medium containing
adhesive forces on the inclined surface was equal to

by =2 (18)
vsine

cr

It is not difficult to see that for oo — 0 and hgy — = this contradicts the physics of the phenomenon since an
infinitely thick layer cannot be maintained by adhesive forces on an inclined surface because of the action
of the very large normal stresses.

We consider equilibrium and flow of a two-dimensional layer of an elastoviscoplastic medium along an
inclined surface under the action of the force of gravity (Fig. 3). The equations of equilibrium in a rect-
angular system of coordinates may be written as follows:

Pyx = Pxx (y): Pyy = Pyy ), Tay = Tuy (y)’

d
——— +ysina =0, Zzy —yecosa =0,

Integrating these equations, considering an excess pressure p; to be acting on the free surface of the layer,
i.e., assuming that rxy(h) =0, pyy(h) = —p,, we find

T, = vSina (b —y), (19)
Py = — Py—ycosa(h—y). (20
Since the layer of the medium is infinite, ux = ux(y), uy =uy(y), uz =0, and Hooke's law may be
written
[ 21
Paw = P = T Puw 20
du, 1— 20 (22)
dy —2(1ra)G Pw
du, T . (23)
dy G ¥

Substituting Eq. (19) into Eq. (21) and Eq. (20) into Eq. (22) and integrating, and then determining the con-
stants of integration from the "no slip™ boundary condition ux(0) =0, uy(O) = 0 at the surface, we find

ur__‘_vsinon y h——i),
’ G 2

_ 20—1 _ Y
%'2a—®cyhﬁwmm( 2”'
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We determine the critical thickness hep of the layer, which is maintained by the adhesive forces on the
inclined surface, from the Mises plasticity condition (7), which after substitution of pxx and pzz from
Eq. (21) assumes the form
. 2
12:_14 (_l_ﬁ) p2 42 = 02,

3 10 ) w7’ ™

Substituting Xy from Eq. (19) and Pyy from Eq. (20), and taking into consideration that \fIZ =gfory=h

—hgyp, we find
. ap,cosa | (0% — ap?) (acos® a + sin® ot)
fror = v{acos®a + sin®a) [‘/1 B a?pcost o, -1 24)

where a= —
 Q—

1 (1~26
3

2
) . For the critical pressure p; = per, her =0, we have

— l—¢
=V3 8.
Pa=V 1—2

Consequently, for p; = per, the whole layer will be enveloped by the flow. If the excess pressure py =0,
then

¢

ho, = S S
7 vVacosta + sin*a

For a horizontal surface, o =0, her = hiy, for a vertical surface, o = 7/2, hgr = hiy, and we obtain
l—¢ 0 “ 0

7 h'cr:—-

b, =13 .
VO T e Ty

cr

For a lubricant att = 20°C, ¢ =0.28 [19], 6 =600 N/ m? [5], hi,. =18.3 cm, hg. = 6.5 cm. If there is

a layer of the medium on the inclined surface with thickness greater than h.y, then in the region0 < y < h
— her the medium will flow like a liquid. The components of the flow velocity will be vy = vx(¥), Vy = Vg
=0.

Since the layer is infinite, then upon substituting Txy from Eq. (19) into Eq. (13) and integrating the
resulfing equation, using as boundary condifion the ™o slip® condition of the medium on the inclined sur~
face, i.e., vx(0) =0, we find the velocity in the form

e =

. . " N
vsino y( __i)_{_ 8' 1nh y.
m 2 ) sino h

The velocity of the elastic layer on the surface can be obtained from the boundary condition vy (h —hey)
= Vs
ysine 02 her

= 20T g In
% 2y ( x) 1 sin o h

The volumetric rate of flow of the medium per unit layer width is equal to

h—hey

ysino (A% — hir) L
3n ynsino

(h—h

g = vofiep -+ S v dy = cr)-

0

In the expression hgy is determined from Eq. (24). For py; = pep, the volumetric outflow rate of the medium
is
vsinoh® 0%h
q = —

31 v sine

Some cases were treated in [20-21] concerned with the flow of an elastoviscoplastic medium and boundary
layer theory.

NOTATION
D =4q/7R?® is the mean velocity gradient, sec-!;
éij is the deviator of deformation rates; point stands for partial differentiation with respect to
time;
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ey = £ii/ 3i

ey =£4i/ 3
F is the mass force;
G is the shear modulus;
h is the height of elastoviscoplastic layer;
I, = 81581j /2 is the second invariant of stress deviator;
L =2 éij éij is the second invariant of deformation rate deviator;
1 is the conduit length;
Pij is the stress tensor;
Ap is the pressure drop;
q is the flow rate;
R is the tube radius;
81 is the stress deviator;
uj is the shear;
vi is the velocity;
X, Vy Z, T are the coordinates;
o is the angle of plane inclination to horizon;
Y, P are the specific weight and density of medium;
) is the Kronecker delta;
€4 is the deformation tensor;
éij is the tensor of deformation rates;
7 is the plastic viscosity;
0 is the limit shear stress;
o is the Poisson coefficient;
T is the shear stress;
Tw is the shear stress at wall, dyn/cm?,
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